MousiPLIER: A Mouse Pathway-Level Information Extractor Model

Author:

Zhang Shuo,Heil Benjamin J.,Mao Weiguang,Chikina Maria,Greene Casey S.ORCID,Heller Elizabeth A.ORCID

Abstract

AbstractHigh throughput gene expression profiling is a powerful approach to generate hypotheses on the underlying causes of biological function and disease. Yet this approach is limited by its ability to infer underlying biological pathways and burden of testing tens of thousands of individual genes. Machine learning models that incorporate prior biological knowledge are necessary to extract meaningful pathways and generate rational hypothesis from the vast amount of gene expression data generated to date. We adopted an unsupervised machine learning method, Pathway-level information extractor (PLIER), to train the first mouse PLIER model on 190,111 mouse brain RNA-sequencing samples, the greatest amount of training data ever used by PLIER. mousiPLER converted gene expression data into a latent variables that align to known pathway or cell maker gene sets, substantially reducing data dimensionality and improving interpretability. To determine the utility of mousiPLIER, we applied it to a mouse brain aging study of microglia and astrocyte transcriptomic profiling. We found a specific set of latent variables that are significantly associated with aging, including one latent variable (LV41) corresponding to striatal signal. We next performed k-means clustering on the training data to identify studies that respond strongly to LV41, finding that the variable is relevant to striatum and aging across the scientific literature. Finally, we built a web server (http://mousiplier.greenelab.com/) for users to easily explore the learned latent variables. Taken together this study provides proof of concept that mousiPLIER can uncover meaningful biological processes in mouse transcriptomic studies.Significance statementAnalysis of RNA-sequencing data commonly generates differential expression of individual genes across conditions. However, genes are regulated in complex networks, not as individual entities. Machine learning models that incorporate prior biological information are a powerful tool to analyze human gene expression. However, such models are lacking for mouse despite the vast number of mouse RNA-seq datasets. We trained a mouse pathway-level information extractor model (mousiPLIER). The model reduced the data dimensionality from over 10,000 genes to 196 latent variables that map to prior pathway and cell marker gene sets. We demonstrated the utility of mousiPLIER by applying it to mouse brain aging data and developed a web server to facilitate the use of the model by the scientific community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3