Antisense transcription and PRC2 repression function in parallel during vernalization

Author:

Nielsen MathiasORCID,Menon GovindORCID,Zhao YushengORCID,Mateo-Bonmati EduardoORCID,Wolff PhilipORCID,Zhou Shaoli,Howard Martin,Dean Caroline

Abstract

Non-coding transcription induces chromatin changes that can mediate environmental responsiveness, but the causes and consequences of these mechanisms are still unclear. Here, we investigate how antisense transcription interfaces with Polycomb Repressive Complex 2 silencing during winter-induced epigenetic regulation of ArabidopsisFLOWERING LOCUS C(FLC). Through genetic, chromatin, and computational analyses, we show thatFLCis silenced through pathways that function with different dynamics: an antisense transcription-mediated pathway capable of fast response; and in parallel a slow Polycomb Repressive Complex 2 (PRC2) switching mechanism that maintains each allele in an epigenetically silenced state. Components of both the antisense and PRC2 pathways are regulated by a common transcriptional regulator (NTL8), which accumulates slowly due to reduced growth at low temperatures. The parallel activities of the regulatory steps, which we encapsulate in a mathematical model, creates a flexible system for registering widely fluctuating natural temperature conditions that change year on year, and yet ensure robust epigenetic silencing ofFLC.SignificanceThe role of non-coding transcription in establishing and maintaining chromatin states is controversial, mainly because of extensive feedbacks complicating analysis of the relationship between co-transcriptional processing, chromatin state and transcription. This controversy has extended to the role of antisense transcription in the Polycomb-mediated epigenetic silencing of ArabidopsisFLC, a key step in the process of vernalization. Here, we show that antisense transcription and PRC2 silenceFLCin parallel pathways that are affected by growth dynamics and temperature fluctuations. These features explain the varied importance of antisense transcription in cold-inducedFLCepigenetic silencing seen in various studies using different environmental and growth conditions. The parallel repressive inputs and extensive feedbacks make the mechanism counter-intuitive but provide great flexibility to the plant.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3