Emergent epileptiform activity drives spinal sensory circuits to generate ectopic bursting in intraspinal afferent axons after cord injury

Author:

Bryson Matthew,Kloefkorn Heidi,Idlett-Ali Shaquia,Martin Karmarcha,Garraway Sandra M.,Hochman Shawn

Abstract

AbstractSpinal cord injury (SCI) leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform elsewhere, we explored whether such activity emerges in spinal sensory circuits in a thoracic SCI contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots (DRs) demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which synchronized across multiple adjacent DRs. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABAAreceptor activation, presumably via shifting subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of epileptiform networks. Indeed, these same features were reproduced in naïve animals with the convulsant 4-aminopyridine (4-AP). We conclude that SCI promotes the emergence of epileptiform activity in spinal sensory networks that promotes profound corruption of sensory signaling. This corruption includes downstream actions driven by ectopic afferent bursts that propagate via reentrant central and peripheral projections and GABAergic presynaptic circuit hypoexcitability during the refractory period.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3