Absence of CD47 in the tumor microenvironment modulates tumor metabolism and immunosuppressive signatures limiting breast cancer progression

Author:

Stirling Elizabeth R.,Tsai Yu-Ting,Bronson Steven M.,Wilson Adam,Westwood Brian,Thomas Alexandra,Triozzi Pierre L.,Furdui Cristina M.,Lesser Glenn J.,Cook Katherine L.,Soto-Pantoja David R.

Abstract

AbstractThe majority of breast cancers are generally considered immune-deprived tumors. This lack of immunogenicity severely hinders effectiveness of current immunotherapy approaches limiting therapeutic options to control disease. Therefore, we need new biomarkers to determine and enhance immune responses to improve the outcome of cancer patients experiencing invasive disease. Our data in matched human patient biopsies show that CD47 expression increases from primary to metastatic tumors. CD47 is an integral membrane protein that impairs antitumor immunosurveillance and influences normal tissue metabolism. However, whether CD47 plays a role in regulating tumor bioenergetics is unknown. A carcinogen-induced mouse mammary carcinogenesis model demonstrates that the absence of CD47 reduces tumor burden, which is associated with a distinct metabolic signature compared to WT tumors. Depletion of several lipid metabolites was observed in the absence of CD47, and metabolic dependency experiments suggest that anti-sense blockade of CD47 limits reliance on fatty acid oxidation as a fuel supporting cellular respiration on cancer cells. Our global metabolomics analysis also implicated the absence of CD47 in downregulation of immunosuppressive metabolites of the tryptophan and prostaglandin pathways. Spatial proteomic analysis revealed increased immune infiltrate and substantial reduction in immunosuppressive immune checkpoint proteins in the absence of CD47 with the highest reduction in intra-tumoral PD-L1 expression. Since anti-PD-L1 therapy is used in the current strategy to treat triple-negative breast cancer (TNBC), we targeted CD47 in an EMT-6 syngeneic TNBC model. Thein vivoknockdown of CD47 sensitized tumors to anti-PD-L1 therapy to decrease tumor burden and increase intratumoral cytotoxic T cells. Therefore, targeting CD47 may be a suitable immunotherapeutic option to limit immunosuppression and enhance the efficacy of immune checkpoint blockade.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3