Jointly modeling deep mutational scans identifies shifted mutational effects among SARS-CoV-2 spike homologs

Author:

Haddox Hugh K.ORCID,Galloway Jared G.ORCID,Dadonaite BernadetaORCID,Bloom Jesse D.ORCID,Matsen Frederick A.ORCID,DeWitt William S.ORCID

Abstract

ABSTRACTDeep mutational scanning (DMS) is a high-throughput experimental technique that measures the effects of thousands of mutations to a protein. These experiments can be performed on multiple homologs of a protein or on the same protein selected under multiple conditions. It is often of biological interest to identify mutations with shifted effects across homologs or conditions. However, it is challenging to determine if observed shifts arise from biological signal or experimental noise. Here, we describe a method for jointly inferring mutational effects across multiple DMS experiments while also identifying mutations that have shifted in their effects among experiments. A key aspect of our method is to regularize the inferred shifts, so that they are nonzero only when strongly supported by the data. We apply this method to DMS experiments that measure how mutations to spike proteins from SARS-CoV-2 variants (Delta, Omicron BA.1, and Omicron BA.2) affect cell entry. Most mutational effects are conserved between these spike homologs, but a fraction have markedly shifted. We experimentally validate a subset of the mutations inferred to have shifted effects, and confirm differences of >1,000-fold in the impact of the same mutation on spike-mediated viral infection across spikes from different SARS-CoV-2 variants. Overall, our work establishes a general approach for comparing sets of DMS experiments to identify biologically important shifts in mutational effects.Significance StatementAmino-acid mutations to a protein have effects that can shift as the protein evolves or is put under new selective pressure. The effects of amino-acid mutations to a specific protein under a defined selective pressure can be measured by deep mutational scanning experiments. Here, we devise an approach to quantify shifts in mutational effects between experiments performed on different homologs (i.e. variants) of the same protein, or on the same protein selected under different conditions. We use this approach to compare experiments performed on three homologs of SARS-CoV-2 spike, identifying mutations that have shifted in their effect on spike-mediated viral infection by >1,000 fold across SARS-CoV-2 variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3