Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain

Author:

Gutierrez-Barragan DanielORCID,Ramirez Julian S.B.ORCID,Panzeri Stefano,Xu Ting,Gozzi AlessandroORCID

Abstract

ABSTRACTEvolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic principles that govern intrinsic fMRI network fluctuations are conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that fMRI network dynamics in awake macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the rodent brain. Importantly, in all species the identified C-modes exhibit species-invariant dynamic features, including intrinsic infraslow dynamics and preferred occurrence at specific phases of global fMRI signal fluctuations. Moreover, C-modes occurrence rates in awake humans, macaques and mice reflect temporal trajectories of least energy and predicts ranking of corresponding functional connectivity gradients. Our results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3