Author:
Dong Bin,Mahapatra Shivam,Clark Matthew G.,Carlsen Mark,Mohn Karsten J.,Ma Seohee,Brasseale Kent,Crim Grace,Zhang Chi
Abstract
AbstractControlling chemical processes in live cells is a challenging task. The spatial heterogeneity of biochemical reactions in cells is often overlooked by conventional means of incubating cells with desired chemicals. A comprehensive understanding of spatially diverse biochemical processes requires precise control over molecular activities at the subcellular level. Herein, we develop a closed-loop optoelectronic control system that allows the manipulation of biomolecular activities in live cells at high spatiotemporal precision. Chemical-selective fluorescence signals are utilized to command lasers that trigger specific chemical reactions or control the activation of photoswitchable inhibitors at desired targets. We demonstrate the capability to selectively produce reactive oxygen species (ROS) solely at targeted organelles using blue light. Notably, the induction of ROS in the endoplasmic reticulum leads to a more pronounced disruption of tubulin polymerization and a reduction in green fluorescent protein signals, in comparison to that in lipid droplets. Moreover, when combined with a photoswitchable inhibitor, we selectively inhibit tubulin polymerization within subcellular compartments. This technology enables spatiotemporal control over chemical processes and drug activities, exclusively at desired targets, while minimizing undesired effects on non-targeted locations.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献