Abstract
AbstractDynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study we employ this paradigm to answer a basic question: in enzyme superfamilies where the catalytic mechanism, active sites and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as the representatives of the conserved Protein Tyrosine Phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Publisher
Cold Spring Harbor Laboratory