Simulations of sequence evolution: how (un)realistic they are and why

Author:

Trost Johanna,Haag JuliaORCID,Höhler DimitriORCID,Jacob Laurent,Stamatakis AlexandrosORCID,Boussau Bastien

Abstract

AbstractMotivationSimulating Multiple Sequence Alignments (MSAs) using probabilistic models of sequence evolution plays an important role in the evaluation of phylogenetic inference tools, and is crucial to the development of novel learning-based approaches for phylogenetic reconstruction, for instance, neural networks. These models and the resulting simulated data need to be as realistic as possible to be indicative of the performance of the developed tools on empirical data and to ensure that neural networks trained on simulations perform well on empirical data. Over the years, numerous models of evolution have been published with the goal to represent as faithfully as possible the sequence evolution process and thus simulate empirical-like data. In this study, we simulated DNA and protein MSAs under increasingly complex models of evolution with and without insertion/deletion (indel) events using a state-of-the-art sequence simulator. We assessed their realism by quantifying how accurately supervised learning methods are able to predict whether a given MSA is simulated or empirical.ResultsOur results show that we can distinguish between empirical and simulated MSAs with high accuracy using two distinct and independently developed classification approaches across all tested models of sequence evolution. Our findings suggest that the current state-of-the-art models fail to accurately replicate several aspects of empirical MSAs, including site-wise rates as well as amino acid and nucleotide composition.Data and Code AvailabilityAll simulated and empirical MSAs, as well as all analysis results, are available athttps://cme.h-its.org/exelixis/material/simulation_study.tar.gz. All scripts required to reproduce our results are available athttps://github.com/tschuelia/SimulationStudyandhttps://github.com/JohannaTrost/seqsharp.Contactjulia.haag@h-its.org

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3