Blood pressure lowering enhances cerebrospinal fluid efflux primarily via the lymphatic vasculature

Author:

Jukkola JariORCID,Kaakinen MikaORCID,Singh AbhishekORCID,Moradi Sadegh,Ferdinando HanyORCID,Myllylä TeemuORCID,Kiviniemi VesaORCID,Eklund LauriORCID

Abstract

AbstractBackgroundInside the incompressible cranium, the volume of cerebrospinal fluid (CSF) is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering (BPL) on fluorescent CSF tracer absorption into the systemic blood circulation.MethodsBPL was performed by an i.v. administration of nitric oxide donor sodium nitroprusside (5 µg kg-1min-1) or the Ca2+-channel blocker nicardipine hydrochloride (0.5 µg kg-1min-1) for 10 and 15 to 40 mins, respectively. The effect of BPL on CSF clearance was investigated by measuring the efflux of fluorescent tracers (40 kDa FITC-dextran, 45 kDa Texas Red-conjugated ovalbumin) into blood and deep cervical lymph nodes.ResultsNicardipine and sodium nitroprusside reduced blood pressure by 32.0 ± 19.6% and 22.0 ± 2.5%, while temporarily elevating in intracranial pressure by 14.0 ± 6.0% and 11.6 ± 2.0%, respectively. BPL significantly increased tracer accumulation into deep cervical lymph nodes and systemic circulation, but reduced perivascular inflow along penetrating arteries in the brain. The enhanced tracer efflux by BPL into the systemic circulation was markedly reduced (-66.7%) by ligation of lymphatic vessels draining into deep cervical lymph nodes.ConclusionsThis is the first study showing that CSF clearance can be improved with acute hypotensive treatment and that the effect of the treatment is reduced by ligation of a lymphatic drainage pathway. Enhanced CSF clearance by BPL may have therapeutic potential in diseases with dysregulated CSF flow.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3