XA4C: eXplainable representation learning via Autoencoders revealing Critical genes

Author:

Li Qing,Yu Yang,Kossinna Pathum,Lun Theodore,Liao Wenyuan,Zhang Qingrun

Abstract

ABSTRACTMachine Learning models have been frequently used in transcriptome analyses. Particularly, Representation Learning (RL), e.g., autoencoders, are effective in learning critical representations in noisy data. However, learned representations, e.g., the “latent variables” in an autoencoder, are difficult to interpret, not to mention prioritizing essential genes for functional follow-up. In contrast, in traditional analyses, one may identify important genes such as Differentially Expressed (DiffEx), Differentially Co-Expressed (DiffCoEx), and Hub genes. Intuitively, the complex gene-gene interactions may be beyond the capture of marginal effects (DiffEx) or correlations (DiffCoEx and Hub), indicating the need of powerful RL models. However, the lack of interpretability and individual target genes is an obstacle for RL’s broad use in practice. To facilitate interpretable analysis and gene-identification using RL, we propose “Critical genes”, defined as genes that contribute highly to learned representations (e.g., latent variables in an autoencoder). As a proof-of-concept, supported by eXplainable Artificial Intelligence (XAI), we implemented eXplainable Autoencoder for Critical genes (XA4C) that quantifies each gene’s contribution to latent variables, based on which Critical genes are prioritized. Applying XA4C to gene expression data in six cancers showed that Critical genes capture essential pathways underlying cancers. Remarkably,Critical genes has little overlap with Hub or DiffEx genes, however, has a higher enrichment in a comprehensive disease gene database (DisGeNET), evidencing its potential to disclose massive unknown biology. As an example, we discovered five Critical genes sitting in the center of Lysine degradation (hsa00310) pathway, displaying distinct interaction patterns in tumor and normal tissues. In conclusion, XA4C facilitates explainable analysis using RL and Critical genes discovered by explainable RL empowers the study of complex interactions.Author SummaryWe propose a gene expression data analysis tool, XA4C, which builds an eXplainable Autoencoder to reveal Critical genes. XA4C disentangles the black box of the neural network of an autoencoder by providing each gene’s contribution to the latent variables in the autoencoder. Next, a gene’s ability to contribute to the latent variables is used to define the importance of this gene, based on which XA4C prioritizes “Critical genes”. Notably, we discovered that Critical genes enjoy two properties: (1) Their overlap with traditional differentially expressed genes and hub genes are poor, suggesting that they indeed brought novel insights into transcriptome data that cannot be captured by traditional analysis. (2) The enrichment of Critical genes in a comprehensive disease gene database (DisGeNET) is higher than differentially expressed or hub genes, evidencing their strong relevance to disease pathology. Therefore, we conclude that XA4C can reveal an additional landscape of gene expression data.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Goodfellow I , Bengio Y , Courville A. Deep learning: MIT press; 2016.

2. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

3. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease;Cell Syst,2019

4. Dwivedi SK , Tjarnberg A , Tegner J , Gustafsson M . Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder. Nat Commun. 2020;11(1).

5. Jiayi Bian QL , Albert Leung , Guotao Yang , Jun Yan , Jingjing Wu , Xingyi Guo , Quan Long . Integrating autoencoder-transformed gene expressions into TWAS studies (AE-TWAS) to identify gene-trait associations. To be submitted to Bioinformatics in May 2023. 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3