Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy

Author:

Yoshinaga DaisukeORCID,Feng Rui,Prondzynski MaksymilianORCID,Shani Kevin,Tharani Yashasvi,Milosh Joseph,Walker David,Carreon Chrystalle Katte,Boss Bridget,Upton Sheila,Parker Kevin Kit,Pu William T.,Bezzerides Vassilios J.ORCID

Abstract

ABSTRACTBACKGROUNDN-terminal-acetyltransferases catalyze N-terminal acetylation (Nt-acetylation), an evolutionarily conserved co-translational modification. Nt-acetylation regulates diverse signaling pathways, yet little is known about its effects in the heart. To gain insights, we studied NAA10-related syndrome, in which mutations in NAA10, which catalyzes Nt-acetylation, causes severe QT prolongation, hypotonia, and neurodevelopmental delay.METHODSWe identified a missense variant in NAA10 (c.10C>A; p.R4S) that segregated with severe QT prolongation, arrhythmia, cardiomyopathy, and sudden death in a large kindred. We developed patient-derived and genome-edited human induced pluripotent stem cell (iPSC) models and deeply phenotyped iPSC-derived cardiomyocytes (iPSC-CMs) to dissect the mechanisms underlying NAA10-mediated cardiomyocyte dysfunction.RESULTSThe NAA10-R4S mutation reduced enzymatic activity, decreased expression levels of NAA10/NAA15 proteins, and destabilized the NatA complex. In iPSC-CM models of NAA10 dysfunction, dysregulation of the late sodium and slow rectifying potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation and increased risk for arrhythmogenesis. Engineered heart tissues generated from mutant NAA10 cell lines had significantly decreased contractile force and sarcomeric disorganization, consistent with the cardiomyopathic phenotype in the identified family members. Diastolic calcium levels were increased with corresponding alterations in calcium handling pathways. We identified small molecule and genetic therapies that reversed the effects of NAA10 dysregulation of iPSC-CMs.CONCLUSIONSOur study defines novel roles of Nt-acetylation in cardiac ion channel regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3