CBD and PSP cell-passaged Tau Seeds Generate Heterogeneous Fibrils with A sub-population Adopting Disease Folds

Author:

Zeng ZhikaiORCID,Vijayan Vishnu,Tsay Karen,Frost Matthew P.,Quddus Athena,Albert Alexa,Vigers Michael,Woerman Amanda L.ORCID,Han Songi

Abstract

AbstractThe recent discovery by cryo-electron microscopy that the neuropatho-logical hallmarks of different tauopathies, including Alzheimer’s disease, corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), are caused by unique misfolded conformations of the protein tau is among the most profound developments in neurodegenerative disease research. To capitalize on these discoveries for therapeutic development, one must achievein vitroreplication of tau fibrils that adopt the rep-resentative tauopathy disease folds - a grand challenge. To understand whether the commonly used, but imperfect, fragment of the tau pro-tein, K18, is capable of inducing specific protein folds, fibril seeds derived from CBD- and PSP-infected biosensor cells expressing K18, were used to achieve cell-free assembly of naïve, recombinant 4R tau into fibrils without the addition of any cofactors. Using Double Electron Electron Resonance (DEER) spectroscopy, we discovered that cell-passaged patho-logical seeds generate heterogeneous fibrils that are distinct between the CBD and PSP lysate-seeded fibrils, and are also unique from heparin-induced tau fibril populations. Moreover, the lysate-seeded fibrils contain a characteristic sub-population that resembles either the CBD or PSP disease fold, corresponding with the respective starting patient sam-ple. These findings indicate that CBD and PSP patient-derived fibrils retain strain properties after passaging through K18 reporter cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3