Abstract
AbstractBackgroundPancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a complex tumor microenvironment. Angiogenesis is of paramount importance in the proliferation and metastasis of PDAC. However, currently, there are no well-defined biomarkers available to guide the prognosis and treatment of PDAC.ResultsIn this study, we investigated the interactions between tumor-associated endothelial cells (TAECs) and tumor cells in PDAC, and identified a specific subset of TAECs characterized by high expression of COL4A1. COL4A1+ endothelial cells interact with tumor cells through the COLLAGEN signaling pathway to promote tumor cell proliferation, migration, and invasion. We also observed activation of HOXD9 in COL4A1+ endothelial cells. Based on these findings, we developed a prognostic model called TaEMS, which accurately predicts patient prognosis. TaEMS identified high-risk patients enriched in cell cycle-related pathways and low-risk patients enriched in focal adhesions, smooth muscle regulation, and immune pathways. Moreover, high-risk patients displayed a reduced level of immune cell infiltration, indicating the presence of a “cold tumor” phenotype.ConclusionsOverall, our study uncovered an intricate crosstalk between TAECs and tumor cells in PDAC, emphasizing the role of HOXD9 and highlighting the potential of TaEMS as a prognostic biomarker for precise therapies.
Publisher
Cold Spring Harbor Laboratory