Exploring Genetic Associations of Three Types of Risk Factors with Ischemic Stroke: An Integrated Bioinformatics Study

Author:

Liu YiORCID,Wang Weili,Cui Xin,Xie Yanming

Abstract

AbstractBackgroundIschemic stroke (IS) is a primary cause of disability and mortality globally. More and more reports suggest a strong association between blood pressure, blood glucose, and blood lipids and their metabolic products with IS.MethodsWe extracted the genetic tools of blood pressure, blood glucose, and blood lipids and their metabolites as instrumental variables, which were then paired with GWAS data on IS and a Mendelian randomization (MR) analysis was performed to assess the effect of these exposures on the disease. Following the positive results, colocalization analysis was performed to identify shared genes associated with exposures and IS. We then performed differential expression analysis using the GEO dataset to identify the differentially expressed associated genes (DEAGs) from associated shared genes. Additional analyzes were performed on these DEAGs to obtain their importance scores using four machine learning models. A nomogram was created using genes with high importance scores to predict the level of risk assessment between DEAGs and IS.ResultsThere is a positive correlation between blood pressure, blood glucose and the risk of IS onset, while blood lipids and their metabolic products are positively or negatively correlated with the risk. There are 64 shared genes of blood pressure, blood lipids and their metabolic products with IS. Thirteen DEAGs were obtained, and among which FURIN, MAN2A2, HDDC3, ALDH2, and TOMM40 were identified as feature genes for creating the nomogram which can quantitatively predict the risk of IS onset with the expression of these feature genes. By cluster analysis, we found that DEAGs expression underlying immune inflammation, angiogenesis and development, lipid metabolism, etc.ConclusionThis study suggests a significant association between blood pressure, blood glucose, and blood lipids and their metabolic products with IS, and predicts that these exposures mainly regulate the occurrence, development, and prognosis of IS through mechanisms such as DNA repair, DNA methylation, mitochondrial repair, apoptosis, autophagy, etc.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3