Four Individually Identified Paired Dopamine Neurons Signal Taste Punishment in LarvalDrosophila

Author:

Weber DeniseORCID,Vogt KatrinORCID,Miroschnikow AntonORCID,Pankratz MichaelORCID,Thum Andreas S.ORCID

Abstract

AbstractDopaminergic neurons (DANs) carry out multiple tasks in the brain, including the transmission of information related to rewards and punishments across various animal species. They are responsible for evaluating sensory input, storing resultant associations as memory, and continuously updating them based on their relevance and reliability. Accurate comprehension of the dopaminergic system’s operation necessitates an understanding of the specific functions mediated by individual DANs. To this end, our research employsDrosophilalarvae, which possess approximately 12,000 neurons in their brains, of which only around 1% (approximately 120) are DANs.The presynaptic projections to the mushroom body (MB) - a brain region pivotal for associative olfactory learning in insects - are limited to only eight larval dopaminergic neurons. These DANs are further subdivided into two clusters: the primary protocerebral anterior medial cluster (pPAM) comprises four cells, and the dorsolateral 1 cluster (DL1) comprises the remaining four cells. Our findings confirm previous research that demonstrates that the pPAM DANs innervating the MB’s medial lobe encode for a gustatory sugar reward signal. Furthermore, we have identified four DANs in the DL1 cluster - DAN-c1, DAN-d1, DAN-f1, and DAN-g1 - each of which innervates distinct compartments of the MB peduncle, lateral appendix, and vertical lobe. Optogenetic activation of DAN-f1 and DAN-g1 alone suffices to substitute for salt punishment. Furthermore, optogenetic inhibition, calcium imaging results and electron microscopy-based reconstruction of all sensory input circuits to the four DL1 DANs demonstrate that each DAN encodes a different aspect of salt punishment, with DAN-g1 being of central importance.To summarize, our investigation has revealed the existence of a cellular division of labor among larval DANs concerning the transmission of dopaminergic reward (pPAM cluster) and punishment signals (DL1 cluster). Individual DANs in each cluster encode for distinct but partially overlapping aspects of the teaching signal. The striking resemblance in the organizing principle of larval DANs with that of its adult counterpart and the mammalian basal ganglion suggests that there may be a limited number of efficient neural circuit solutions available to address more complex cognitive challenges in nature.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3