Activation of the IKK2-NFκB pathway in VSMCs inhibits calcified vascular stiffness in CKD by reducing the secretion of calcifying extracellular vesicles

Author:

Miyazaki-Anzai Shinobu,Masuda Masashi,Keenan Audrey L.,Shiozaki Yuji,Miyazaki Makoto

Abstract

IKK2-NFκB pathway mediated-inflammation in vascular smooth muscle cells (VSMCs) has been proposed to be an etiologic factor in medial calcification and stiffness. However, the role of the IKK2-NFκB pathway in medial calcification remains to be elucidated. In this study, we found that CKD induces inflammatory pathways through the local activation of the IKK2-NFκB pathway in VMSCs associated with calcified vascular stiffness. Despite reducing the expression of inflammatory mediators, complete inhibition of the IKK2-NFκB pathwayin vitroandin vivounexpectedly exacerbated vascular mineralization and stiffness. In contrast, activation of NFκB by SMC-specific IκB deficiency attenuated calcified vascular stiffness in CKD. Inhibition of the IKK2-NFκB pathway induced apoptosis of VSMCs by reducing anti-apoptotic gene expression, whereas activation of NFκB reduced CKD-dependent vascular cell death. In addition, increased calcifying extracellular vesicles through the inhibition of the IKK2-NFκB pathway induced mineralization of VSMCs, which was significantly reduced by blocking cell death. This study reveals that activation of the IKK2-NFκB pathway in VSMCs plays a protective role in CKD-dependent calcified vascular stiffness by reducing the release of apoptotic calcifying extracellular vesicles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3