Enucleation of theC. elegansembryo revealed the mechanism of dynein-dependent spacing between microtubule asters

Author:

Fujii KenORCID,Kondo TomoORCID,Kimura AkatsukiORCID

Abstract

ABSTRACTThe centrosome is a major microtubule-organizing center in animal cells. The intracellular positioning of the centrosomes is important for proper cellular function. One of the features of centrosome positioning is the spacing between centrosomes. The spacing activity is mediated by microtubules extending from the centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in theCaenorhabditis elegansembryo, a genetic setup was developed to produce enucleated embryos. The centrosome duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We knocked down genes in the enucleated embryo and found that the timely spacing was dependent on cytoplasmic dynein. Based on these results, we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also found a dynein-independent but non-muscle myosin II-dependent movement of the centrosomes in a later cell cycle phase. The dynein-dependent spacing mechanisms for positioning the centrosomes revealed in this study is likely functioning in the cell with nucleus and chromosomes, including the processes of centrosome separation and spindle elongation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3