IF1 controls UCP1-dependent mitochondrial bioenergetics in brown adipocytes

Author:

Brunetta Henver S.,Jung Anna S.,Francisco Annelise,Castilho Roger F.,Mori Marcelo A.,Bartelt AlexanderORCID

Abstract

AbstractIn thermogenic adipocytes, uncoupling protein-1 (UCP1) is a key mediator of non-shivering thermogenesis (NST) by uncoupling the electron transport chain from FoF1-ATP synthase-mediated ATP production. While regulatory mechanisms of UCP1 are important for NST, it is unknown whether also the activity of ATP synthase is modulated during NST. Here, we show a critical role of Inhibitory Factor 1 (IF1), an inhibitor of ATP synthase, for brown adipocyte energy metabolism. In mice, IF1 protein content is diminished in brown adipose tissue of mice after 5 days of cold exposure. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called reverse mode) was higher in mitochondria isolated from cold-adapted mice compared to mice housed at room temperature. While silencing of IF1 in cultured brown adipocytes did not affect MMP, IF1 overexpression resulted in an inability of mitochondria to sustain MMP upon adrenergic stimulation. The effects of IF1 overexpression on MMP were blunted when UCP1 was silenced or when a mutant IF1, incapable of binding to ATP synthase, was used. In brown adipocytes, IF1 ablation was sufficient to increase mitochondrial lipid oxidation and the cellular dependency on glycolysis to produce ATP. Conversely, IF1 overexpression blunted mitochondrial respiration without causing energetic stress, leading to a quiescent-like phenotype in brown adipocytes. In conclusion, our data show that the cold-induced downregulation of IF1 facilitates the reverse mode of ATP synthase and enables proper bioenergetic adaptation of brown adipose tissue to effectively support NST.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3