Clearwing butterflies challenge the thermal melanism hypothesis

Author:

Ossola ViolaineORCID,Pottier Fabien,Pinna CharlineORCID,Bougiouri KatiaORCID,Tournié Aurélie,Michelin AnneORCID,Andraud ChristineORCID,Gomez DorisORCID,Elias MarianneORCID

Abstract

AbstractIn contrast to most butterflies harboring opaque wing colorations, some species display large transparent patches on their wings. Wing transparency, which entails a dramatic reduction of pigmentation, raises the question of potential costs for vital functions, such as thermoregulation, especially along climatic gradients. The thermal melanism hypothesis posits that darker colorations should be favored in colder environments, which enables them to absorb more radiation and maintain a body temperature compatible with activity. This prediction extends to the near infrared (NIR) range, which represents a large proportion of solar radiation. Here we assess the implications of wing transparency for light absorption and thermal properties in 42 butterfly species from the neotropical tribe Ithomiini that range the extent of transparency, from fully opaque to highly transparent, and we test whether those species conform to the prediction of the thermal melanism hypothesis. We find that transparent wings are less efficient than opaque wings to absorb light across UV, Visible and NIR wavelength ranges, and are also less efficient to collect heat. Moreover, dark coloration occupies a lower proportion of wing area as altitude increases, and ithomiine species harbor more transparency at higher altitudes, where climatic conditions are colder, going strongly against the prediction of the thermal melanism hypothesis. We discuss these surprising results in light of recent studies suggesting that factors other than adaptation to cold, such as predation pressure, physiology or behavior, may have driven the evolution of wing patterns in Ithomiini.Significance StatementThe thermal melanism hypothesis predicts that organisms should be darker and absorb solar radiation more efficiently in colder environments. The Neotropical butterflies Ithomiini are unusual in that many species harbor large transparent patches on their wings, raising questions related to their efficacy of solar radiation absorption and heating capacities. We investigate optical and thermal properties of several ithomiine species along a climatic gradient. We find that transparent wings are less efficient at absorbing radiation and collecting heat. Unexpectedly, the proportion of transparent species increases with altitude, challenging the thermal melanism hypothesis and suggesting that factors other than adaptation to cold, such as predation pressure, may have driven the evolution of wing patterns in Ithomiini.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3