Abstract
AbstractClinical interpretation of exome and genome sequencing data remains challenging and time consuming, with many variants with unknown effects found in genes with unknown functions. Automated prioritization of these variants can improve the speed of current diagnostics and identify previously unknown disease genes. Here, we used 31,499 RNA-seq samples to predict the phenotypic consequences of variants in genes. We developed GeneNetwork Assisted Diagnostic Optimization (GADO), a tool that uses these predictions in combination with a patient’s phenotype, denoted using HPO terms, to prioritize identified variants and ease interpretation. GADO is unique because it does not rely on existing knowledge of a gene and can therefore prioritize variants missed by tools that rely on existing annotations or pathway membership. In a validation trial on patients with a known genetic diagnosis, GADO prioritized the causative gene within the top 3 for 41% of the cases. Applying GADO to a cohort of 38 patients without genetic diagnosis, yielded new candidate genes for seven cases. Our results highlight the added value of GADO (www.genenetwork.nl) for increasing diagnostic yield and for implicating previously unknown disease-causing genes.
Publisher
Cold Spring Harbor Laboratory
Reference46 articles.
1. Brown TL , Meloche TM . Exome sequencing a review of new strategies for rare genomic disease research. Genomics. Academic Press; 2016. p. 109–14.
2. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Online Mendelian Inheritance in Man, OMIM [Internet]. Available from: https://omim.org/
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献