ZCWPW1 is recruited to recombination hotspots by PRDM9, and is essential for meiotic double strand break repair

Author:

Wells DanielORCID,Bitoun EmmanuelleORCID,Moralli DanielaORCID,Zhang GangORCID,Hinch Anjali GuptaORCID,Donnelly PeterORCID,Green CatherineORCID,Myers Simon RORCID

Abstract

AbstractDuring meiosis, homologous chromosomes pair (synapse) and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, recombination initiates with double-strand breaks (DSBs) within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have yet been identified.We identified Zcwpw1, which possesses H3K4me3 and H3K36me3 recognition domains, as highly co-expressed with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone. Surprisingly, ZCWPW1 also recognizes CpG dinucleotides, including within many Alu transposons.Male Zcwpw1 homozygous knockout mice show completely normal DSB positioning, but persistent DMC1 foci at many hotspots, particularly those more strongly bound by PRDM9, severe DSB repair and synapsis defects, and downstream sterility. Our findings suggest a model where ZCWPW1 recognition of PRDM9-bound sites on either the homologous, or broken, chromosome is critical for synapsis, and hence fertility.Graphical Abstract LegendIn humans and other species, recombination is initiated by double strand breaks at sites bound by PRDM9. Upon binding, PRDM9 deposits the histone marks H3K4me3 and H3K36me, but the functional importance of these marks has remained unknown. Here, we show that PRDM9 recruits ZCWPW1, a reader of both these marks, to its binding sites genome-wide. ZCWPW1 does not help position the breaks themselves, but is essential for their downstream repair and chromosome pairing, and ultimately meiotic success and fertility in mice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3