Human co-transcriptional splicing kinetics and coordination revealed by direct nascent RNA sequencing

Author:

Drexler Heather L.,Choquet Karine,Churchman L. Stirling

Abstract

AbstractHuman genes have numerous exons that are differentially spliced within pre-mRNA. Understanding how multiple splicing events are coordinated across nascent transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of CO-transcriptional Processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. nano-COP showed that in both human andDrosophilacells, co-transcriptional splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B globally abolished co-transcriptional splicing in both species. Our findings revealed that splicing order does not strictly follow the order of transcription and is influenced by cis-regulatory elements. In human cells, introns with delayed splicing frequently neighbor alternative exons and are associated with RNA-binding factors. Moreover, neighboring introns in human cells tend to be spliced concurrently, implying that splicing occurs cooperatively. Thus, nano-COP unveils the organizational complexity of metazoan RNA processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3