Nonlinear transfer and temporal gain control in ON bipolar cells

Author:

Deshmukh Nikhil R.,Berry Michael J.

Abstract

AbstractThe separation of visual input into discrete channels begins at the photoreceptor to bipolar cell synapse. Current models of the ON pathway describe the time-varying membrane voltage of ON bipolar cells as a linear function of light fluctuations. While this linearity holds under some visual conditions, stimulating the retina with full-field, high contrast flashes reveals a number of nonlinearities already present in the input current of ON bipolar cells. First, we show that the synaptic input to ON bipolar cells is asymmetric in response to equal flashes of opposite polarity. Next, we show that this asymmetry emerges because the responses to dark flashes increase linearly with contrast, whereas responses to bright flashes are highly rectified. We also describe how the outward current saturates in response to dark flashes of increasing duration. Furthermore, varying the inter-flash interval between a pair of high contrast flashes reveals a rapid, transient form of gain control that modulates both the amplitude and time course of the flash response. We develop a phenomenological model that captures the primary features of the ON bipolar cell response at high contrast. Finally, we discuss the implications of these nonlinearities in our understanding of how retinal circuitry shapes the visual signal.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3