Abstract
ABSTRACTA critical step towards malaria elimination will be the interruption of Plasmodium transmission from the human host to the mosquito. At the core of the transmission cycle lies Plasmodium sexual reproduction leading to zygote formation and mosquito midgut colonisation by ookinetes. Whilst in vitro ookinete culture from the murine and avian malaria parasites, Plasmodium berghei and P. gallinaceum, has greatly increased our knowledge of transmission biology; efforts to mimic the process in the human parasite P. falciparum have, to date, had only limited success. Using fluorescence microscopy and flow cytometry with antibodies specific to the male gametocyte and developing ookinetes, we sought to evaluate P. falciparum ookinete production using previously published in vitro protocols. We then compared in vitro versus in vivo ookinete production in both P. falciparum and P. berghei parasites, exploring potential barriers to complete development. Finally, we sought to test a wide range of literature-led culture conditions towards further optimisation of in vitro P. falciparum ookinete production. Despite extensive testing, our efforts to replicate published methods did not produce appreciable quantities of fully formed P. falciparum ookinetes in vitro. In parallel, however, gametocyte cultures that failed to differentiate fully in vitro successfully developed into ookinetes in vivo with an efficiency approximating that of P. berghei. Flow cytometry analysis showed that this disparity likely lies with the poor fertilization of P. falciparum gametes in vitro. Attempts to improve gametocyte fertility or define conditions more permissive to fertilisation/ookinete survival in vitro were also unsuccessful. Current in vitro conditions for P. falciparum ookinete production are not optimal for gamete fertilisation either due to the lack of parasite-species-specific mosquito factors missing from in vitro culture, or non-permissive cues contaminating culture preparations.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献