Abstract
ABSTRACTNitrated fatty acids (NO2-FAs) are formed by the addition reaction of nitric oxide- and nitrite-derived nitrogen dioxide with unsaturated fatty acids. Nitrated fatty acids act as signaling molecules in mammals through the formation of covalent adducts with cellular thiols. The study of NO2-FAs in plant systems constitutes an interesting and emerging area. The presence of NO2-FA has been reported in olives, peas, rice and in Arabidopsis. To gain a better understanding of the role of NO2-FA on plant physiology, we analyzed the effects of exogenous application of nitro-oleic acid (NO2-OA) to tomato cell cultures. We found that NO2-OA induced reactive oxygen species (ROS) production in a dose-dependent manner via activation of NADPH oxidases, which requires calcium entry from the extracellular compartment and protein kinase activation, a mechanism that resembles the plant defense responses. NO2-OA-induced ROS production, expression of plant defense genes and led to cell death. The mechanism of action of NO2-OA involves a reduction in the glutathione cellular pool and covalently addition reactions with protein thiols and reduced glutathione. Altogether, these results indicate that NO2-OA triggers responses associated with plant defense, revealing its possible role as a signal molecule in biotic stress.Abbreviations•NO2nitrogen dioxide•NOnitric oxideFAfatty acidGSHreduced glutathioneH2O2hydrogen peroxydeNO2-FAnitro fatty acidsNO2-Lnnitro-linolenic acidNO2-OAnitro-oleic acidOAoleic acidROSreactive oxygen species
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献