AtRsgA from Arabidopsis thaliana controls maturation of the small subunit of the chloroplast ribosome

Author:

Janowski Marcin,Zoschke Reimo,Scharff Lars,Jaime Silvia Martinez,Ferrari Camilla,Proost Sebastian,Omranian Nooshin,Musialak-Lange Magdalena,Nikoloski Zoran,Graf Alexander,Schöttler Mark A.,Sampathkumar Arun,Vaid Neha,Mutwil Marek

Abstract

SummaryPlastid ribosomes are very similar in structure and function to ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favourable at biological conditions, it requires activity of many assembly factors. Here, we have characterized a homolog of bacterial rsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA-sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were upregulated, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signalling pathways. To conclude, this study reveals a new chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function.Significance statementAtRsgA is an assembly factor necessary for maturation of the small subunit of the chloroplast ribosome. Depletion of AtRsgA leads to dwarfed, chlorotic plants and smaller, but more numerous chloroplasts. Large-scale transcriptomic and proteomic analysis revealed that chloroplast-encoded and - targeted proteins were less abundant, while the corresponding transcripts were upregulated in the mutant. We analyse the transcriptional responses of several retrograde signalling pathways to suggest a mechanism underlying this compensatory response.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3