Depletion of Ric-8B leads to reduced mTORC2 activity

Author:

Nagai Maíra H.,Gutiyama Luciana M.,Xavier Victor P. S.,Machado Cleiton F.ORCID,Reis Alice H.,Donnard Elisa R.,Galante Pedro A. F.ORCID,Abreu Jose G.,Festuccia William T.ORCID,Malnic BettinaORCID

Abstract

AbstractmTOR, a serine/threonine protein kinase that is involved in a series of critical cellular processes, can be found in two functionally distinct complexes, mTORC1 and mTORC2. In contrast to mTORC1, little is known about the mechanisms that regulate mTORC2. Here we show that mTORC2 activity is reduced in mice with a hypomorphic mutation of the Ric-8B gene. Ric-8B is a highly conserved protein that acts as a non-canonical guanine nucleotide exchange factor (GEF) for heterotrimeric Gαs/olf type subunits. We found that Ric-8B hypomorph embryos are smaller than their wild type littermates, fail to close the neural tube in the cephalic region and die during mid-embryogenesis. Comparative transcriptome analysis revealed that signaling pathways involving GPCRs and G proteins are dysregulated in the Ric-8B mutant embryos. Interestingly, this analysis also revealed an unexpected impairment of the mTOR signaling pathway.Phosphorylation of Akt at Ser 473 is downregulated in the Ric-8B mutant embryos, indicating a decreased activity of mTORC2. In contrast, phosphorylation of S6, a downstream target of mTORC1, is unaltered. Knockdown of the endogenous Ric-8B gene in HEK293T cells leads to reduced phosphorylation levels of Akt at Ser 473, but not of S6, further supporting the selective involvement of Ric-8B in mTORC2 activity. Our results reveal a crucial role for Ric-8B in development and provide novel insights into the signals that regulate mTORC2 activity.Author SummaryGene inactivation in mice can be used to identify genes that are involved in important biological processes and that may contribute to disease. By using this approach, we found that the Ric-8B gene is essential for embryogenesis and for the normal development of the nervous system. Ric-8B mutant mouse embryos are smaller than their wild type littermates and show neural tube defects at the cranial region. This approach also allowed us to identify the biological pathways that are involved in the observed phenotypes, the G protein and mTORC2 signaling pathways. mTORC2 plays particular important roles also in the adult brain, and has been implicated in neurological disorders. Ric-8B is highly conserved in mammals, including humans. Our mutant mice provide a model to study the complex molecular and cellular processes underlying the interplay between Ric-8B and mTORC2 in neuronal function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3