Genotypic clustering does not imply recent tuberculosis transmission in a high prevalence setting: A genomic epidemiology study in Lima, Peru

Author:

Dixit Avika,Freschi Luca,Vargas Roger,Calderon Roger,Sacchettini James,Drobniewski Francis,Galea Jerome T.,Contreras Carmen,Yataco Rosa,Zhang Zibiao,Lecca Leonid,Kolokotronis Sergios-Orestis,Mathema Barun,Farhat Maha R.

Abstract

AbstractBackgroundWhole genome sequencing (WGS) can elucidate Mycobacterium tuberculosis (Mtb) transmission patterns but more data is needed to guide its use in high-burden settings. In a household-based transmissibility study of 4,000 TB patients in Lima, Peru, we identified a large MIRU-VNTR Mtb cluster with a range of resistance phenotypes and studied host and bacterial factors contributing to its spread.MethodsWGS was performed on 61 of 148 isolates in the cluster. We compared transmission link inference using epidemiological or genomic data with and without the inclusion of controversial variants, and estimated the dates of emergence of the cluster and antimicrobial drug resistance acquisition events by generating a time-calibrated phylogeny. We validated our findings in genomic data from an outbreak of 325 TB cases in London. Using a larger set of 12,032 public Mtb genomes, we determined bacterial factors characterizing this cluster and under positive selection in other Mtb lineages.FindingsFour isolates were distantly related and the remaining 57 isolates diverged ca. 1968 (95% HPD: 1945-1985). Isoniazid resistance arose once, whereas rifampicin resistance emerged subsequently at least three times. Amplification of other drug resistance occurred as recently as within the last year of sampling. High quality PE/PPE variants and indels added information for transmission inference. We identified five cluster-defining SNPs, including esxV S23L to be potentially contributing to transmissibility.InterpretationClusters defined by MIRU-VNTR typing, could be circulating for decades in a high-burden setting. WGS allows for an improved understanding of transmission, as well as bacterial resistance and fitness factors.FundingThe study was funded by the National Institutes of Health (Peru Epi study U19-AI076217 and K01-ES026835 to MRF). The funding sources had no role in any aspect of the study, manuscript or decision to submit it for publication.Research in contextEvidence before this studyUse of whole genome sequencing (WGS) to study tuberculosis (TB) transmission has proven to have higher resolution that traditional typing methods in low-burden settings. The implications of its use in high-burden settings are not well understood.Added value of this studyUsing WGS, we found that TB clusters defined by traditional typing methods may be circulating for several decades. Genomic regions typically excluded from WGS analysis contain large amount of genetic variation that may affect interpretation of transmission events. We also identified five bacterial mutations that may contribute to transmission fitness.Implications of all the available evidenceAdded value of WGS for understanding TB transmission may be even higher in high-burden vs. low-burden settings. Methods integrating variants found in polymorphic sites and insertions and deletions are likely to have higher resolution. Several host and bacterial factors may be responsible for higher transmissibility that can be targets of intervention to interrupt TB transmission in communities.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multidrug-resistant tuberculosis outbreak in South Africa;The Lancet Infectious Diseases;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3