Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics?

Author:

AlAdwani Mohammad,Saavedra Serguei

Abstract

AbstractRecent work has shown that higher-order interactions can increase the stability, promote the diversity, and better explain the dynamics of ecological communities. Yet, it remains unclear whether the perceived benefits of adding higher-order terms into population dynamics models come from fundamental principles or a simple mathematical advantage given by the nature of multivariate polynomials. Here, we develop a general method to quantify the mathematical advantage of adding higher-order interactions in ecological models based on the number of free-equilibrium points that can be engineered in a system (i.e., equilibria that can be feasible or unfeasible by tunning model parameters). We apply this method to calculate the number of free-equilibrium points in Lotka-Volterra dynamics. While it is known that Lotka-Volterra models without higher-order interactions only have one free-equilibrium point regardless of the number of parameters, we find that by adding higher-order terms this number increases exponentially with the dimension of the system. Our results suggest that while adding higher-order interactions in ecological models may be good for prediction purposes, they cannot provide additional explanatory power of ecological dynamics if model parameters are not ecologically restricted.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher order interactions and species coexistence;Theoretical Ecology;2020-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3