Cigarette Smoke Exposure Impairs β-Cell Function Through Activation of Oxidative Stress and Ceramide Accumulation
Author:
Tong Xin,Chaudry Zunaira,Lee Chih-Chun,Bone Robert N.,Kanojia Sukrati,Maddatu Judith,Sohn Paul,Robertson Morgan A.,Petrache Irina,Evans-Molina Carmella,Kono Tatsuyoshi
Abstract
ABSTRACTObjectivesEpidemiological studies indicate that first- and second-hand cigarette smoke (CS) exposure are important risk factors for the development of type 2 diabetes (T2D). Additionally, elevated diabetes risk has been reported to occur within a short period of time after smoking cessation, and health risks associated with smoking are increased when combined with obesity. At present, the mechanisms underlying these associations remain incompletely understood. The objective of this study was to test the impact of CS exposure on pancreatic β-cell function using rodent and in vitro models.MethodsBeginning at 8 weeks of age, C57BL/6J mice were concurrently fed high fat-diet (HFD) and exposed to CS for 11 weeks, followed by an additional 11 weeks of smoking cessation with continued HFD exposure. Glucose tolerance testing was performed during CS exposure and during the cessation period. Cultured β-cells (INS-1) and primary islets were exposed ex vivo to CS extract (CSE), and β-cell function and viability were tested. Since CS increases ceramide in lungs cells and these bioactive sphingolipids have been implicated in pancreatic β-cell dysfunction in diabetes, islet and β-cell sphingolipid levels were measured in islets from CS-exposed mice and in CSE-treated islets and INS-1 cells using liquid chromatography-tandem mass spectrometry.ResultsCompared to HFD-fed ambient air-exposed mice, HFD-fed and CS- exposed mice had reduced weight gain and better glucose tolerance during the active smoking period. Following smoking cessation, CS-mice exhibited rapid weight gain and a significantly greater increase in glucose intolerance compared to non-smoking control mice. CS-exposed mice had higher serum proinsulin/insulin ratios, indicative of β-cell dysfunction, significantly lower β-cell mass (p=0.02), and reduced β-cell proliferation (p=0.006), and increased islet ceramide accumulation. Ex vivo exposure of isolated islets to CSE was sufficient to increase islet ceramide accumulation, reduce insulin gene expression and glucose-stimulated insulin secretion, and increase β-cell oxidative and ER stress. Treatment with the antioxidant N-acetylcysteine, markedly attenuated the effects of CSE on ceramide levels, restored β-cell function and survival, and increased cyclin D2 expression, while also reducing activation of β-cell ER and oxidative stress.ConclusionsOur results indicate that CS exposure inhibits insulin production, processing, and secretion and reduced β-cell viability and proliferation. These effects were linked to increased β-cell oxidative and ER stress and ceramide accumulation. Mice fed HFD continued to experience detrimental effects of CS exposure even during smoking cessation. Elucidation of mechanisms by which CS exposure impairs β-cell function in synergy with obesity will help design therapeutic and preventive interventions for both active and former smokers.
Publisher
Cold Spring Harbor Laboratory
Reference55 articles.
1. Federation, I.D. , 2015. IDF Diabetes Atlas, 7th edn, Brussels, Belgium. 2. Spaulding, A.C. , Eldridge, G.D. , Chico, C.E. , Morisseau, N. , Drobeniuc, A. , Fils-Aime, R. , et al., 2018. Smoking in Correctional Settings Worldwide: Prevalence, Bans, and Interventions. Epidemiol Rev, p. 82–95. 3. Drope J, S.N. , Cahn Z , Hamill S , Islami F , Liber A , Nargis N , Stoklosa M. , 2018. Tobacco Atlas. American Cancer Society and Vital Strategies 6th Edition. 4. Passive Smoking and Risk of Type 2 Diabetes: A Meta-Analysis of Prospective Cohort Studies 5. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis;Lancet Diabetes Endocrinol,2015
|
|