Author:
Kaul Aparna,Chen Yi-Hsien,Emnett Ryan J.,Dahiya Sonika,Gutmann David H.
Abstract
Tandem duplications involving the BRAF kinase gene have recently been identified as the most frequent genetic alteration in sporadic pediatric glioma, creating a novel fusion protein (f-BRAF) with increased BRAF activity. To define the role of f-BRAF in gliomagenesis, we demonstrate that f-BRAF regulates neural stem cell (NSC), but not astrocyte, proliferation and is sufficient to induce glioma-like lesions in mice. Moreover, f-BRAF-driven NSC proliferation results from tuberin/Rheb-mediated mammalian target of rapamycin (mTOR) hyperactivation, leading to S6-kinase-dependent degradation of p27. Collectively, these results establish mTOR pathway activation as a key growth regulatory mechanism common to both sporadic and familial low-grade gliomas in children.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献