Global analysis of non-animal peroxidases provides insights into the evolutionary basis of this gene family in green lineage

Author:

Mbadinga Duchesse Lacour Mbadinga,Li Qiang,Ranocha Philippe,Martinez Yves,Cooper Endymion D.,Dunand Christophe

Abstract

AbstractThe non-animal peroxidases belong to a superfamily of oxidoreductases that reduce the hydrogen peroxide and oxidize numerous substrates. Since their initial characterization in 1992, several advances have provided an understanding into the origin and evolutionary history of this family of proteins. Here, we report for the first time an exhaustive evolutionary analysis of non-animal peroxidases using integratedin silicoand biochemical strategies. Thanks to the availability of numerous genomic sequences from many species belonging to different kingdoms together with expert and exhaustive annotation of peroxidase sequences centralized in a dedicated database, we have deepened our understanding of the evolutionary process underlying non-animal peroxidases through phylogenetic reconstructions. We analysed the distribution of all non-animal peroxidases in more than 200 eukaryotic organismsin silico. First, we show that the presence or absence of non-animal peroxidases can be correlated with the presence or absence of certain organelles or with specific biological processes. Examining a wide range of organisms, we confirmed that ascorbate peroxidases (APx) and cytochromes c peroxidases (CcP) were detected respectively in chloroplast and mitochondria containing organisms. Plants, which contain both organelles, are an exception and contain only APxs without CcP. Class III peroxidases (CIII Prx) were only detected in plants and Class II peroxidases (CII Prx) in fungi related to wood decay and plant degradation.Moreover, we demonstrate that biochemical activities (APx, CcP and CIII Prx) assayed in protein extracts obtained from 30 different eukaryotic organisms strongly support the distribution of the sequences resulting from ourin silicoanalysis. The biochemical results confirmed both the presence and classification of non-animal peroxidase encoding sequences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3