Multiple constrained minimum variance beamformer (MCMV) performance in connectivity analyses

Author:

Nunes Adonay S.,Moiseev Alexander,Kozhemiako Nataliia,Cheung Teresa,Ribary Urs,Doesburg Sam M.

Abstract

AbstractFunctional brain connectivity is increasingly being seen as critical for cognition, perception and motor control.Magnetoencephalography and electroencephalography are modalities that offer noninvasive mapping of electrophysiological interactions among brain regions, yet suffer from signal leakage and signal cancellation when estimating brain activity. This leads to biased connectivity values which complicate interpretation. In this study, we test the hypothesis that a Multiple Constrained Minimum Variance beamformer (MCMV) outperforms the more traditional Linearly Constrained Minimum Variance beamformer (LCMV) for estimation of electrophysiological connectivity. To this end, MCMV and LCMV performance is compared in task related analyses with both simulated data and human MEG recordings of visual steady state signals, and in resting state analyses with simulated data and human MEG data of 89 subjects. In task related scenarios connectivity was estimated using coherence and phase locking values, whereas envelope correlations were used for the resting state data. We also introduce a novel Augmented Pairwise MCMV (APW-MCMV) approach for signal leakage suppression in resting state analyses and assess its performance against LCMV and more conventional MCMV approaches. We demonstrate that with MCMV effects of signal mixing and coherent source cancellation are greatly reduced in both task related and resting state conditions, while in contrast to other approaches 0-and short time lag interactions are preserved. In addition, we demonstrate that in resting state analyses, APW-MCMV strongly reduces spurious connections while better controlling for false negatives compared to more conservative measures such as symmetrical orthogonalization.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3