Phosphoproteomic identification of Xin as a novel requirement for skeletal muscle disuse atrophy

Author:

Li Zhencheng,Jensen PiaORCID,Abrigo Johanna,Henriquez-Olguin Carlos,Gingrich Molly,Rytter Nicolai,Gliemann Lasse,Richter Erik A.,Hawke Thomas,Cabello-Verrugio Claudio,Larsen Martin R.,Jensen Thomas E.

Abstract

AbstractBackgroundImmobilization of skeletal muscle in a stretched position is associated with marked protection against disuse atrophy. Some intramyocellular changes in known proteins and post-translational modifications were previously linked to this phenomenon but there are likely many presently unknown proteins and post-translational modifications that contribute to this beneficial effect.MethodsTo identify novel proteins and phosphorylation events involved in stretch-induced reduction of disuse atrophy, we conducted a global unbiased screen of the changes occurring in skeletal muscle in control vs. 1 day and 1 week stretched cast-immobilized mouse tibialis anterior muscle, using quantitative tandem mass spectrometry on HILIC-fractionated muscle peptides with follow-up studies in transgenic mice and humans.ResultsOur mass spectrometry analyses detected 11714 phosphopeptides and 2081 proteins, of which 53 phosphopeptides and 5 proteins, 125 phosphopeptides and 43 proteins were deregulated after 1D and 7D of stretched immobilization, respectively. The sarcomere and muscle tendinous junction-associated putative multi-adaptor protein Xin was among the most highly upregulated proteins both in terms of phosphorylation and protein expression and was confirmed to increase with stretch but not disuse atrophy in mice and to increase and decrease with exercise and cast immobilization, respectively, in humans. Xin-/- mice were partially protected against disuse but not denervation atrophy in both stretched and flexed immobilized muscles compared to WT.ConclusionThis study identified Xin as a novel protein involved in disuse atrophy and also provides a resource to guide future hypothesis-driven investigations into uncovering critical factors in the protection against disuse atrophy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3