Abstract
AbstractThe ribosome CAR interaction surface behaves like an extension of the decoding center A site and has H-bond interactions with the +1 codon that is next in line to enter the A site. Through molecular dynamics simulations, we investigated the codon sequence specificity of this CAR-mRNA interaction and discovered a strong preference for GCN codons, suggesting that there may be a sequence-dependent layer of translational regulation dependent on the CAR interaction surface. Dissection of the CAR-mRNA interaction through nucleotide substitution experiments showed that the first nucleotide of the +1 codon dominates over the second nucleotide position, consistent with an energetically favorable zipper-like activity that emanates from the A site through the CAR-mRNA interface. The +1 codon/CAR interaction is also affected by the identity of nucleotide 3 of +1 GCN codons which influences the stacking of G and C. Clustering analysis suggests that the A site decoding center adopts different neighborhood substates that depend on the identity of the +1 codon.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. GNN Codon Adjacency Tunes Protein Translation;International Journal of Molecular Sciences;2024-05-29