Relative pitch representations and invariance to timbre

Author:

McPherson Malinda J.ORCID,McDermott Josh H.

Abstract

ABSTRACTInformation in speech and music is often conveyed through changes in fundamental frequency (f0), perceived by humans as “relative pitch”. Relative pitch judgments are complicated by two facts. First, sounds can simultaneously vary in timbre due to filtering imposed by a vocal tract or instrument body. Second, relative pitch can be extracted in two ways: by measuring changes in constituent frequency components from one sound to another, or by estimating the f0 of each sound and comparing the estimates. We examined the effects of timbral differences on relative pitch judgments, and whether any invariance to timbre depends on whether judgments are based on constituent frequencies or their f0. Listeners performed up/down and interval discrimination tasks with pairs of spoken vowels, instrument notes, or synthetic tones, synthesized to be either harmonic or inharmonic. Inharmonic sounds lack a well-defined f0, such that relative pitch must be extracted from changes in individual frequencies. Pitch judgments were less accurate when vowels/instruments were different compared to when they were the same, and were biased by the associated timbre differences. However, this bias was similar for harmonic and inharmonic sounds, and was observed even in conditions where judgments of harmonic sounds were based on f0 representations. Relative pitch judgments are thus not invariant to timbre, even when timbral variation is naturalistic, and when such judgments are based on representations of f0.

Publisher

Cold Spring Harbor Laboratory

Reference84 articles.

1. Representations of Pitch and Timbre Variation in Human Auditory Cortex

2. Distinct Representations of Tonotopy and Pitch in Human Auditory Cortex

3. Symmetric interactions and interference between pitch and timbre

4. American National Standard Acoustical Terminology;ANSI, A.;ANSI,1994

5. The neuronal representation of pitch in primate auditory cortex;Nature,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3