The dgc2 gene encoding di-guanylate cyclase suppresses both motility and biofilm formation in the filamentous cyanobacterium Leptolyngbya boryana

Author:

Toida Kazuma,Kushida Wakana,Yamamoto Hiroki,Yamamoto Kyoka,Uesaka Kazuma,Ihara Kunio,Fujita Yuichi,Iwasaki Hideo

Abstract

AbstractColony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is the filamentous cyanobacterial species, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen-fixation. Although a widely used type strain (wild type) of this species has not been reported to show any motile activity, we isolated a spontaneous mutant strain which shows active motility (gliding activity) to give rise to complicated colony patters, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations on the genome in the mutant strain. We confirmed that inactivation of a candidate gene, dgc2 (LBDG_02920), in the wild type background was sufficient to give rise to motility and the morphological colony patterns. This gene encodes a protein, containing the GGDEF motif, which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the mutant strain lacking dgc2 significantly facilitated biofilm formation, suggesting a role of DGC for suppressing both gliding motility and biofilm formation. Thus, L. boryana provides an excellent genetic model to study dynamic colony pattern formation, and novel insight on a role of c-di-GMP for biofilm formation.ImportanceSelf-propelled bacteria often show complicated collective behaviors, such as the formation of dense moving clusters, which is exemplified by wandering comet-like and rotating disk-like colonies, while molecular details of forming such structures remain limited. We found that a strain deficient in the diguanylate cyclase gene dgc2 in the filamentous cyanobacterium L. boryana induces motility, complex and dynamic colony pattern formation including the comet-like and disk-like clusters. While c-di-GMP has been reported to activate biofilm formation in some bacterial species, disruption of the dgc2 gene unexpectedly enhanced it, providing a novel role for c-di-GMP regulatory system in both colony pattern formation and biofilm formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3