SARS-CoV-2 Point Mutation and Deletion Spectra, and Their Association with Different Disease Outcome

Author:

Martínez-González Brenda,Soria María Eugenia,Vázquez-Sirvent Lucía,Ferrer-Orta Cristina,Lobo-Vega Rebeca,Mínguez Pablo,de la Fuente Lorena,Llorens Carlos,Soriano Beatriz,Ramos RicardoORCID,Cortón Marta,López-Rodríguez Rosario,García-Crespo Carlos,Gallego Isabel,de Ávila Ana Isabel,Gómez Jordi,Enjuanes LuisORCID,Salar-Vidal Llanos,Esteban JaimeORCID,Fernandez-Roblas Ricardo,Gadea Ignacio,Ayuso Carmen,Ruíz-Hornillos Javier,Verdaguer NuriaORCID,Domingo EstebanORCID,Perales CeliaORCID

Abstract

ABSTRACTMutant spectra of RNA viruses are important to understand viral pathogenesis, and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultra-deep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of thirty nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19.IMPORTANCEThe study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity, and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3