Two-photon patterned photostimulation with low-power, high-efficiency and reliable single-cell optogenetic control

Author:

Wang Yifan,Zheng Yao,Xu Yongxian,Li Rongrong,Zheng Yameng,Chen Jiajia,Li Xiaoming,Hu Hailan,Duan Shumin,Gong WeiORCID,Si Ke

Abstract

ABSTRACTTwo-photon optogenetics enables selectively stimulating individual cells for manipulating neuronal ensembles. As the general photostimulation strategy, the patterned two-photon excitation has enabled millisecond-timescale activation for single or multiple neurons, but its activation efficiency is suffered from high laser power due to low beam-modulation efficiency. Here, we develop a high- efficiency beam-shaping method based on the Gerchberg-Saxton (GS) algorithm with spherical-distribution initial phase (GSSIP) to reduce the patterned two-photon excitation speckles and intensity. It can well control the phase of shaped beams to attain speckle-free accurate patterned illumination with an improvement of 44.21% in the modulation efficiency compared with that of the traditional GS algorithm. A combination of temporal focusing and the GSSIP algorithm (TF-GSSIP) achieves patterned focusing through 500-μm-thickness mouse brain slices, which is 2.5 times deeper than the penetration depth of TF-GS with the same signal-to-noise ratio (SNR). With our method, the laser power can be reduced to only 55.56% of that with traditional method (the temporal focusing with GS, TF-GS) to reliably evoke GCaMP6s response in C1V1-expressing cultured neurons with single-cell resolution. Besides, the photostimulation efficiency is remarkably increased by 80.19% at the same excitation density of 0.27 mW/μm2. This two-photon stimulation method with low-power, reliable and patterned illumination may pave the way for analyzing neural circuits and neural coding and decoding mechanism.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3