High activity of an affinity-matured ACE2 decoy against Omicron SARS-CoV-2 and pre-emergent coronaviruses

Author:

Sims Joshua J.ORCID,Lian Sharon,Meggersee Rosemary L.,Kasimsetty Aradhana,Wilson James M.ORCID

Abstract

AbstractThe viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly its cell-binding spike protein gene, has undergone rapid evolution during the coronavirus disease 2019 (COVID-19) pandemic. Variants including Omicron BA.1 and Omicron BA.2 now seriously threaten the efficacy of therapeutic monoclonal antibodies and vaccines that target the spike protein. Viral evolution over a much longer timescale has generated a wide range of genetically distinct sarbecoviruses in animal populations, including the pandemic viruses SARS-CoV-2 and SARS-CoV-1. The genetic diversity and widespread zoonotic potential of this group complicates current attempts to develop drugs in preparation for the next sarbecovirus pandemic. Receptor-based decoy inhibitors can target a wide range of viral strains with a common receptor and may have intrinsic resistance to escape mutant generation and antigenic drift. We previously generated an affinity-matured decoy inhibitor based on the receptor target of the SARS-CoV-2 spike protein, angiotensin-converting enzyme 2 (ACE2), and deployed it in a recombinant adeno-associated virus vector (rAAV) for intranasal delivery and passive prophylaxis against COVID-19. Here, we demonstrate the exceptional binding and neutralizing potency of this ACE2 decoy against SARS-CoV-2 variants including Omicron BA.1 and Omicron BA.2. Tight decoy binding tracks with human ACE2 binding of viral spike receptor-binding domains across diverse clades of coronaviruses. Furthermore, in a coronavirus that cannot bind human ACE2, a variant that acquired human ACE2 binding was bound by the decoy with nanomolar affinity. Considering these results, we discuss a strategy of decoy-based treatment and passive protection to mitigate the ongoing COVID-19 pandemic and future airway virus threats.Author SummaryViral sequences can change dramatically during pandemics lasting multiple years. Likewise, evolution over centuries has generated genetically diverse virus families posing similar threats to humans. This variation presents a challenge to drug development, in both the breadth of achievable protection against related groups of viruses and the durability of therapeutic agents or vaccines during extended outbreaks. This phenomenon has played out dramatically during the coronavirus disease 2019 (COVID-19) pandemic. The highly divergent Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have upended previous gains won by vaccine and monoclonal antibody development. Moreover, ecological surveys have increasingly revealed a broad class of SARS-CoV-2-like viruses in animals, each poised to cause a future human pandemic. Here, we evaluate an alternative to antibody-based protection and prevention—a decoy molecule based on the SARS-CoV-2 receptor. Our engineered decoy has proven resistant to SARS-CoV-2 evolution during the ongoing COVID-19 pandemic and can neutralize all variants of concern, including Omicron BA.1 and Omicron BA.2. Furthermore, the decoy binds tightly to a broad class of sarbecoviruses related to pandemic SARS-CoV-2 and SARS-CoV-1, indicating that receptor decoys offer advantages over monoclonal antibodies and may be deployed during the COVID-19 pandemic and future coronavirus outbreaks to prevent and treat severe illness.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reflections after 2 years of COVID‐19 pandemic;Reviews in Medical Virology;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3