Abstract
AbstractDeep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, non active-site residues are tolerant to mutations. Here we show that the ccdA antitoxin component of the E.coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and non-synonymous point mutations than inferred previously.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献