Abstract
AbstractAutism is characterised by atypical social communication and stereotyped behaviours. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability (ID), but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterised the behaviour ofShank3Δ11/Δ11mice from three to twelve months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEG). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g.Grm2, Dlgap1), G-protein-signalling pathways (e.g.Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g.Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal1, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded byGad2, we showed that the striosome compartment ofShank3Δ11/Δ11mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of SHANK3-deficient mice and strongly suggest, for the first time, that the impairment in behaviour of these mice are related to an imbalance striosomes/matrix.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献