Genomic surveillance of Bacillus cereus sensu lato strains isolated from meat and poultry products in South Africa enables inter- and intra-national surveillance and source tracking

Author:

Carroll Laura M.,Pierneef Rian,Mathole Aletta,Atanda Abimbola,Matle Itumeleng

Abstract

AbstractMembers of the Bacillus cereus sensu lato (s.l.) species complex, also known as the B. cereus group, vary in their ability to cause illness, but are frequently isolated from foods, including meat products; however, food safety surveillance efforts that employ whole-genome sequencing (WGS) often neglect these potential pathogens. Here, WGS was used to characterize B. cereus s.l. strains (n = 25) isolated during surveillance of meat products in South Africa. Strains were collected from beef, poultry, and mixed meat products obtained from (i) retail outlets, processing plants, and butcheries across six South African provinces (n = 15, 7, and 1, respectively), and (ii) imports in cold stores (n = 2). Strains were assigned to panC Groups IV, III, II, and V (n = 18, 5, 1, and 1, respectively) and spanned multiple genomospecies, regardless of the taxonomy used. All strains possessed diarrheal toxin-encoding genes, while one sequence type 26 (ST26) strain possessed cereulide (emetic toxin) synthetase-encoding genes. No strains harbored anthrax toxin- or capsule-encoding genes. The 25 strains were partitioned into 15 lineages via in silico seven-gene multi-locus sequence typing (MLST), six of which contained multiple strains sequenced in this study, which were identical or nearly identical at the whole-genome scale. Five MLST lineages contained (nearly) identical genomes collected from two or three South African provinces; one MLST lineage contained nearly identical genomes from two countries (South Africa and the Netherlands), indicating that B. cereus s.l. can spread intra- and inter-nationally via foodstuffs.ImportanceNation-wide foodborne pathogen surveillance programs that employ high-resolution genomic methods have been shown to provide vast public health and economic benefits. However, B. cereus s.l. are often overlooked during large-scale, routine WGS efforts. Thus, to our knowledge, no studies to date have evaluated the potential utility of WGS for B. cereus s.l. surveillance and source tracking in foodstuffs. In this proof-of-concept study, we applied WGS to B. cereus s.l. strains collected via South Africa’s national surveillance program of domestic and imported meat products, and we provide strong evidence that B. cereus s.l. can be disseminated intra- and inter-nationally via the agro-food supply chain. Our results showcase that WGS can be used for source tracking of B. cereus s.l. in foods, although future WGS and isolate metadata collection efforts are needed to ensure that B. cereus s.l. surveillance initiatives are on par with those of other foodborne pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3