PhysiBoSS 2.0: a sustainable integration of stochastic Boolean and agent-based modelling frameworks

Author:

Ponce-de-Leon MiguelORCID,Montagud ArnauORCID,Noel VincentORCID,Pradas Gerard,Meert Annika,Barillot EmmanuelORCID,Calzone LaurenceORCID,Valencia AlfonsoORCID

Abstract

Cancer progression is a complex phenomenon that spans multiple scales from molecular to cellular and intercellular. Simulations can be used to perturb the underlying mechanisms of those systems and to generate hypotheses on novel therapies. We present a new version of PhysiBoSS, a multiscale modelling framework designed to cover multiple temporal and spatial scales, that improves its integration with PhysiCell, decoupling the cell agent simulations with the internal Boolean model in an easy-to-maintain computational framework. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS, conceived as an add-on that expands the PhysiCell agent-based functionalities with intracellular cell signalling using MaBoSS having a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 successfully reproduces simulations reported in the former version and expands its functionalities such as using user-defined models and cells' specifications, having mechanistic submodels of substrate internalisation with ODEs and enabling the study of drug synergies. PhysiBoSS 2.0 is open-source and publicly available on GitHub (https://github.com/PhysiBoSS/PhysiBoSS) under the BSD 3-clause license with several repositories of accompanying interoperable tools. Additionally, a nanoHUB tool has been set up to ease the use of PhysiBoSS 2.0 (https://nanohub.org/tools/pba4tnf/).

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NVIDIA Grace Superchip Early Evaluation for HPC Applications;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops;2024-01-11

2. Lessons Learned from a Performance Analysis and Optimization of a Multiscale Cellular Simulation;Proceedings of the Platform for Advanced Scientific Computing Conference;2023-06-26

3. Multiscale model of the different modes of cancer cell invasion;Bioinformatics;2023-06-01

4. Multiscale model of the different modes of cancer cell invasion;2022-10-07

5. Patient-specific Boolean models of signalling networks guide personalised treatments;eLife;2022-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3