Exploring the possible role of hybridization in the evolution of photosynthetic pathways in Flaveria (Asteraceae), the prime model of C4 photosynthesis evolution

Author:

Morales-Briones Diego F.ORCID,Kadereit Gudrun

Abstract

AbstractFlaveria (Asteraceae) is the prime model for the study of C4 photosynthesis evolution and seems to support a stepwise acquisition of the pathway through C3-C4 intermediate phenotypes, still existing in Flaveria today. Molecular phylogenies of Flaveria based on concatenated data matrices are currently used to reconstruct the complex sequence of trait shifts during C4 evolution. To assess the possible role of hybridization in C4 evolution in Flaveria, we re-analyzed transcriptome data of 17 Flaveria species to infer the extent of gene tree discordance and possible reticulation events. We found massive gene tree discordance as well as reticulation along the backbone and within clades containing C3-C4 intermediate and C4-like species. An early hybridization event between two C3 species might have triggered C4 evolution in the genus. The clade containing all C4 species plus the C4-like species F. vaginata and F. palmeri is robust but of hybrid origin involving F. angustifolia and F. sonorensis (both C3-C4 intermediate) as parental lineages. Hybridization seems to be a driver of C4 evolution in Flaveria and likely promoted the fast acquisition of C4 traits. This new insight can be used in further exploring C4 evolution and can inform C4 bioengineering efforts.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3