Gnas ablation in CD11c+ cells prevents high-fat diet-induced obesity by elevating adipose tissue catecholamine levels and thermogenesis

Author:

Zeng Liping,Herdman D. Scott,Lee Jihyung,Tao Ailin,Das Manasi,Bertin Samuel,Eckmann Lars,Mahata Sushil,Devulapalli Shwetha,Patel Hemal H.,Molina Anthony J.A.,Osborn Olivia,Corr Maripat,Raz Eyal,Webster Nicholas J.G.

Abstract

ABSTRACTCD11c+ immune cells are a potential therapeutic target for treatment of obesity-related insulin resistance and type 2 diabetes (T2D). In obesity, CD11c+ immune cells are recruited to white adipose tissue and create an inflammatory state that causes both insulin and catecholamine resistance. In this study, we found that ablation of Gnas, the gene that encodes Gas, in CD11c expressing cells protects mice from high-fat diet-induced obesity, glucose intolerance and insulin resistance. GnasΔCD11c mice (KO) had increased oxygen consumption, energy expenditure, and beigeing of white adipose tissue (WAT). Transplantation studies showed that the lean phenotype was conferred by bone marrow-derived cells and the absence of T and B cells by crossing the KO to a Rag1-/- background did not alter the phenotype. Notably, we observed elevated norepinephrine and elevated cAMP signaling in the WAT of KO mice. The KO adipose tissue also had reduced expression of catecholamine transport and degradation enzymes. Collectively, our results identified an important role of Gas in CD11c+ cells in whole body metabolism regulation by controlling norepinephrine levels in WAT, modulating catecholamine-induced lipolysis and increasing thermogenesis that together created a lean phenotype.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3