Augmentation of extracellular ATP synergizes with chemotherapy in triple negative breast cancer

Author:

Manouchehri Jasmine M,Datta Jharna,Willingham Natalie,Wesolowski Robert,Stover DanielORCID,Ganju Ramesh K,Carson William,Ramaswamy Bhuvaneswari,Cherian Mathew A

Abstract

AbstractIntroductionBreast cancer affects two million women worldwide every year and is the most common cause of cancer-related death among women. The triple-negative breast cancer (TNBC) sub-type is associated with an especially poor prognosis because currently available therapies, fail to induce long-lasting responses. Therefore, there is an urgent need to develop novel therapies that result in durable responses. One universal characteristic of the tumor microenvironment is a markedly elevated concentration of extracellular adenosine triphosphate (eATP). Chemotherapy exposure results in further increases in eATP through its release into the extracellular space of cancer cells via P2RX channels. eATP levels are reduced by eATPases. Given that high concentrations of eATP are cytotoxic, we hypothesized that augmenting the release of eATP through P2RX channels and inhibiting extracellular ATPases would sensitize TNBC cells to chemotherapy.MethodsTNBC cell lines MDA-MB 231, Hs 578t and MDA-MB 468 and non-tumorigenic immortalized mammary epithelial MCF-10A cells were treated with increasing concentrations the chemotherapeutic agent paclitaxel in the presence of eATPase inhibitors, specific agonists or antagonists of P2RXs with cell viability and eATP content being measured. Additionally, the mRNA, protein and cell surface expressions of the purinergic receptors P2RX4 and P2RX7 were evaluated in all examined cell lines via qRT-PCR, western blot, and flow cytometry analyses, respectively.ResultsIn the present study, we observed dose-dependent declines in cell viability and increases in eATP in paclitaxel-treated TNBC cell lines in the presence of inhibitors of eATPases. These effects were reversed by specific antagonists of P2RXs. Similar results were observed with P2RX activators. All examined cell lines expressed both P2RX4 and P2RX7 at the mRNA, protein and cell surface levels.ConclusionThese results reveal that eATP modulates the chemotherapeutic response in TNBC cell lines which could be exploited to enhance the efficacy of chemotherapy regimens for TNBC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3