Abstract
ABSTRACTAnimal cell lines cultured for extended periods often undergo extreme genome restructuring events, including polyploidy and segmental aneuploidy that can impede de novo whole-genome assembly (WGA). In Drosophila, many established cell lines also exhibit massive proliferation of transposable elements (TEs) relative to wild-type flies. To better understand the role of transposition during long-term animal somatic cell culture, we sequenced the genome of the tetraploid Drosophila S2R+ cell line using long-read and linked-read technologies. Relative to comparable data from inbred whole flies, WGAs for S2R+ were highly fragmented and generated variable estimates of TE content across sequencing and assembly technologies. We therefore developed a novel WGA-independent bioinformatics method called “TELR” that identifies, locally assembles, and estimates allele frequency of TEs from long-read sequence data (https://github.com/bergmanlab/telr). Application of TELR to a ∼130x PacBio dataset for S2R+ revealed many haplotype-specific TE insertions that arose by somatic transposition in cell culture after initial cell line establishment and subsequent tetraploidization. Local assemblies from TELR also allowed phylogenetic analysis of paralogous TE copies within the S2R+ genome, which revealed that proliferation of different TE families during cell line evolution in vitro can be driven by single or multiple source lineages. Our work provides a model for the analysis of TEs in complex heterozygous or polyploid genomes that are not amenable to WGA and yields new insights into the mechanisms of genome evolution in animal cell culture.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献