Local assembly of long reads enables phylogenomics of transposable elements in a polyploid cell line

Author:

Han ShunhuaORCID,Dias Guilherme B.ORCID,Basting Preston J.ORCID,Viswanatha RaghuvirORCID,Perrimon NorbertORCID,Bergman Casey M.ORCID

Abstract

ABSTRACTAnimal cell lines cultured for extended periods often undergo extreme genome restructuring events, including polyploidy and segmental aneuploidy that can impede de novo whole-genome assembly (WGA). In Drosophila, many established cell lines also exhibit massive proliferation of transposable elements (TEs) relative to wild-type flies. To better understand the role of transposition during long-term animal somatic cell culture, we sequenced the genome of the tetraploid Drosophila S2R+ cell line using long-read and linked-read technologies. Relative to comparable data from inbred whole flies, WGAs for S2R+ were highly fragmented and generated variable estimates of TE content across sequencing and assembly technologies. We therefore developed a novel WGA-independent bioinformatics method called “TELR” that identifies, locally assembles, and estimates allele frequency of TEs from long-read sequence data (https://github.com/bergmanlab/telr). Application of TELR to a ∼130x PacBio dataset for S2R+ revealed many haplotype-specific TE insertions that arose by somatic transposition in cell culture after initial cell line establishment and subsequent tetraploidization. Local assemblies from TELR also allowed phylogenetic analysis of paralogous TE copies within the S2R+ genome, which revealed that proliferation of different TE families during cell line evolution in vitro can be driven by single or multiple source lineages. Our work provides a model for the analysis of TEs in complex heterozygous or polyploid genomes that are not amenable to WGA and yields new insights into the mechanisms of genome evolution in animal cell culture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3