Common Dynamic Determinants Govern Quorum Quenching Activity in N-terminal Serine Hydrolases

Author:

Surpeta BartlomiejORCID,Grulich Michal,Palyzová AndreaORCID,Marešová HelenaORCID,Brezovsky JanORCID

Abstract

ABSTRACTGrowing concerns about microbial antibiotic resistance have motivated extensive research into ways of overcoming antibiotic resistance. Quorum quenching (QQ) processes disrupt bacterial communication via quorum sensing, which enables bacteria to sense the surrounding bacterial cell density and markedly affects their virulence. Due to its indirect mode of action, QQ is believed to exert limited pressure on essential bacterial functions and may thus avoid inducing resistance. Although many enzymes display QQ activity against various bacterial signaling molecules, their mechanisms of action are poorly understood, limiting their potential optimization as QQ agents. Here we evaluate the capacity of three N-terminal serine hydrolases to degrade N-acyl homoserine lactones that serve as signaling compounds for Gram-negative bacteria. Using molecular dynamics simulations of the free enzymes and their complexes with two signaling molecules of different lengths, followed by quantum mechanics/molecular mechanics molecular dynamics simulations of their initial catalytic steps, we clarify the molecular processes underpinning their QQ activity. We conclude that all three enzymes degrade bacterial signaling molecules via similar reaction mechanisms. Moreover, we experimentally confirmed the activity of two penicillin G acylases from Escherichia coli (ecPGA) and Achromobacter spp. (aPGA), adding these biotechnologically well-optimized enzymes to the QQ toolbox. We also observed enzyme- and substrate-dependent differences in the catalytic actions of these enzymes, arising primarily from the distinct structures of their acyl-binding cavities and the dynamics of their molecular gates. As a consequence, the first reaction step catalyzed by ecPGA with a longer substrate had an elevated energy barrier because its shallow acyl binding site could not accommodate a productive substrate-binding configuration. Conversely, aPGA in complex with both substrates exhibited unfavorable energetics in both reaction steps due to the dynamics of the residues gating the acyl binding cavity entrance. Finally, the energy barriers of the second reaction step catalyzed by Pseudomonas aeruginosa acyl-homoserine lactone acylase with both substrates were higher than in the other two enzymes due to the unique positioning of Arg297β in this enzyme. The discovery of these dynamic determinants will guide future efforts to design robust QQ agents capable of selectively controlling virulence in resistant bacterial species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3